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ABSTRACT 

The Honeywell 6180 is a new lar^e-scale computer for the Multlcs 
timesharing system.  This report describes the 6180, and examines the 
feasibility of emulating it with each of three microprogrammable pro- 
cessors:  the Burroughs D-Machine, the Nanodata QM-1, and the Burroughs 
B1700.  Benchmark emulations are presented for each of these machines. 
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SECTION  I 

INTRODUCTION 

This  report presents results  of a study of  the feasibility of 
emulating a very sophisticated large scale computer system,   the 
Honeywell 6180, on three mlcroprogrammable processors:     the 
Burroughs D-machine,  the Burroughs  1700 and the Nanodata OM-1.     The 
6180 is  a third generation computer that  supports the current ver- 
sion of  the Multics system.    Multics is a large timesharing  system 
that embodies such state-of-the-art concepts as virtual memory, 
dynamic   (execution time)   linking,   and advanced access  controls and 
presents one of the most  challenging architectures to an emulator 
of any existing system.     The mlcroprogrammable machines picked  for 
the study were chosen after a cursory evaluation of available hard- 
ware indicated that these were  the only machines with the potential 
for the emulation.     As new mlcroprogrammable processors become 
available,   the emulation methodology developed in this report 
should make  the evaluation of these new processors straightforward. 

This report assumes  the reader is  familiar with some  of  the 
basic  features of Multics.     Chapter I of The Multics System by 
Organick [14]  should be considered a prerequisite for readers of 
this report.     In addition,  "The Multics Virtual Memory" by 
Bensoussan et al [lO] will be very helpful.    Although both  these 
publications discuss  the  implementation of Multics on the  GE645 
(a precursor of the 6180),  most  of  the details have not been 
changed. 

Four sections  follow this  introduction.    Section II presents 
the 6180 architecture in some detail.     Owing to  the paucity of 
documentation for the 6180 at  the  time of  this writing,   this  infor- 
mation was gleaned  from a wide variety of sourfes.     Section  III 
develops  a methodology  for the emulation of the  6180.     The  signif- 
icantly  greater complexity of  the Multics hardware as compared  to 
other  third generation machines  requires  that new ideas be  de- 
veloped  for implementing the 6180 operations in microprograms. 
Section  IV then takes a  typical  6180 operation and examines  the 
emulation of that operation on  the  three microprogrammed processors. 
This examination is in sufficient detail  to allow a benchmark to be 
established  for each emulation.     Finally,  Section V suiranarlzes  the 
major  findings and conclusions  of  the  report. 



SECTION  II 

THR ARCHITECTURE OF  THE HONEWELL 6180 SYSTEM 

INTRODUCTION 

This  section describes  the architecture of the  6180 or Multics 
computer system.     The descriptive material  is  directed  toward   the 
intricacies  of  the instruction execution  cvcle  and dynamic  address 
translation   (DAT)  algorithm and  is  complete enough  to allow   the 
development  of  an emulation raethodolop,'  .md benchmark. 

The  Honeywell 6180 computer svstem supports  the   current  ver- 
sion of  the Mjltics operating  system and   is synonymous with Multics. 
The  6180 has  evolved   from  the  current   generation of Honeywell 
hardware,   the  6000 series.     The  6180  is  essentially  the Honeywell 
6080 modified with DAT hardware   for   the Multics virtual memory.     In 
fact,   a  switch on the  6180 allows   it   to run as  a 6080.     The   6080 is, 
in  turn,   the  largest and most  sophisticated processor  in the  6000 
series,   embodying an extended  instruction  set,   EIS,   (for  character 
string and  decimal arithmetic  processing)   and  the   fastest  circuitry 
and memory  of  the  series. 

The  6180 Multics  system was   first  offered  as a product   in 
second  quarter   1973 and only  one  6180 Multics   is presently 
(September  1973)  available  to   the  general  user.     This  available 
Multics   is  at MIT.     Because   the  system is  so  recent,   standard 
documentation  does not  exist.     Thus   the   following description  comes 
from  a wide  variety of  sources   that  commonly provide  preliminary 
documentation  for evolutionary  systems.     These  sources  include 
Honeywell   645 processor   (the  original Multics machine),   6000  series 
and  EIS  manuals,  MIT  Informations  Processing Center Memos,   and 
articles  in  the Communications  of  the ACM.     Because of  the diverse 
origin  of   the descriptive materials   the presentation of  the  6180 
architecture  should  not be  construed  as  final. 



SYSTEM DESCRIPTION 

The Multics system is composed of processor» memory and input/ 
output modules as well as a front-end processor as shown in Figure 
1.    While the  6180 processor is the active element in the system, 
and as  such deserves pre-tminent  treatment in a discussion of the 
Multics  architecture,  it is necessary  to have sufficient under- 
standing of all system modules,  their  interconnections and  their 
functional characteristics to appreciate processor operations. 
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Figure  1.     A Typical Configuration of  the Multics  System 



The number of each module type in the  6180 system shown in 
Figure  1 is  not  fixed.    A representative example,  the MIT installa- 
tion, has two 6180 processor modules,  three memory modules, one IGM 
(Input/Output Multiplexor),  one communications processor  (A Datanet 
355),   and a two million word bulk store subsystem (replacing the 
second  generation paging drum).     Each memory module provides storage 
cor 128K  (K=1024)   36-bit wcrds.    The operation of modules other  than 
the processor module is quite conventional.     The bulk store facility 
provides high speed secondary storage  for  the virtual memory and 
looks  like an  IGM v/ith a high speed I/O device.    The bulk store, 
therefore,   is  functionally equivalent  to an XOM. 

SYSTEM PERFORMANCE 

The objective of the benchmark emulation  is  to provide some 
comparative measure of the  time to perform some function on the 
6180 vs  the time  Lo perform the same  function on each of the emulators. 
This measure  implies  that the  time  to perform certain functions on 
the 6180 is well established.     It  is not.     Sufficient data exists, 
however,  on the previous Multics performance and on the 6080 to 
allow the extrapolation cf 6180 performance data. 

Since the  6180 and 6080 differ only in the DAT hardware,   if 
functions are  chosen so  that  the DAT algorithm is not  executed,   then 
6080 timings  can be used to predict  the 6180 timings.    Table 1 shows 
the execution  times,  in microseconds,   for  four representative 6080 
instructions.     The STA instruction  is used as  the common function for 

Instruction Type 

Load A (IDA) 
Store A (STA) 
No operation  (NOP) 
Floating add  (FAD) 

6070/6080 Timing1  (fisecs) 

0.7 
1.0 
0.7 
1.7 

Table I.     Instruction Execution Times 

(1)     Taken  from HIS manual [7] 



comparisons of execution times between the 6180 and the various 
emulators   (see section 1\). 

PROCESSOR CONFIGURATION 

A block diagram of the processor module  is shown below in 
Figure  2.     The pre  ossor consists of three functional boxes:     the 
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Figure 2.    Block Diagram of the Processor Module 



appending unit,   the operations  unit  and the controls unit.    The 
three  functions  can be briefly described as  follows: 

Controls Unit:    This unit performs  instruction fetch,  decode, 
execution,  and effective address calculation which may require 
multiple indirect word  fetches.     The  control unit portion oper- 
ates on the standard instruction set and  the extension unit 
operates on  the extended instruction set.     The extended instruc- 
tion set is  a feature of  the even numbered 6000-series processors 
(i.e.,   6040,   6060,  6080)   and includes  instruction decode and 
address calculation of its ov 

Operations Unit:    This unit performs  the  arithmetic and logic 
operations  specified by the various  instructions,  and loads 
and unloads  certain registers. 

Appending Unit:    This unit performs  the various operations 
needed to implement the DAT  (Dynamic Address Translation) 
algorithm.     An instruction can address memory in the virtual 
(append) mode or the absolute mode.    When addressing in the 
virtual mode,   the appending unit takes the two-dimensional 
address and converts it to the appropriate 24-bit absolute 
address. 

Before discussing the operation of  each of the above units  in 
detail,  it  is appropriate to look at  the registers which define each 
unit and discuss how each register is used.     Due to the lack of 
documentation at  this level,   it is  difficult   to develop a taxonomy 
for the registers  that associates each register with a functional 
box.     Thus  the  following groupings  of registers with module functions 
may not be  entirely accurate. 



Controls Unit  Registers 

The registers   functionally belonging to the Controls Unit are 
shown in Figure  3.     These  registers are briefly described as 
follows: 

FLAGS: This is  a  series  of one or more bit  registers  that  indi- 
cate the  state in the very complex cycle between 
instruction fetch and eventual  instruction execution. 

FLAGS 
ADDRESS PREPARATION CYCLE:     XSF,   SDWM,   PTWM,   DSPTW,  SDWNP,  SDWP,   PTW, 

PTW2,   FAP,   FANP,   FABS 
REPEAT MODE:   RF,   RPT,   RD,   RL 
OTHERS:     POT,   PON,   XDE,  XDO,  POA,   RFI,   ITS,   IF 

0 2 3 214 35 36  37 50 51 SU 55 565960 71 
DSBR 

7) 

ADI '// • '////A vl • NO / / / u l/J STACK 

0      2   3 17    IS 35 36          37 38          »tl 
TPR [TRR]                TSR CA 1  CHAR       i   BITNO    1 

0       2  3 17    18 35 

PPR [PRRl                PSR 

0      2    3 

1 IC 

17   18 35  36 3738            Ul 

PRn(0 [ RN 1                SEGNO_, WORDNO I   CHAR BITNO    1 

IR SINGLE   BITS     ZERO,   NEGATIVE , CARRY,  OVERFLOW,   EXPONENT OVERFLOW, 
EXPONENT  UNDERFLOW,   OVERFLOW MASK,   TALLY   RUNOUT,   PARITY 
ERROR,   PARITY MASK,  ABSOLUTE MODE,   NOT  BAR MODE TRUNCATION, 

MULTIWORD   INSTRUCTION  FAULT 

BAR (ZZ    ?ASE ADDRESS 
17 

Xn (0 -7)      r 'NDEX VALUE 
17 

r^i 

Figure 3.     Controls Unit Registers 



DSBR; Descriptor Segment Base Register.     This register contains 
the absolute address of the descriptor  segment for the 
current process  (DSBR.ADR),  specifies  the size of the 
segment  (DSBR.BND), whether or not  it is pagad  (DSBR.U), 
and where the stack can be found   (DSBR.STACK).    More 
detailed discussion of  the use of  this  register will be 
found in the section on address preparation. 

TPR: Temporary Pointer Register.    Virtual addresses are stored 
in pointer registers.    The TPR is  used as a general 
scratch register to hold the virtual  address that would 
correspond to  the memory address  register in conventional 
machines.     TPR.TSR holds the segment number,  TPR.CA holds 
the  current address of the word in the segment,  and 
TPR.TRR is   the ring number associated with the  current 
reference to that segment.    PR.CHAR and PR.BITNO are charac- 
ter and bit addresses used by the Extended Instruction Set. 

PPR: Processor  Pointer Register.     This  register  functions as 
a virtual  instruction counter and is structured similarly 
to TPR.     PPR.IC is the actual 18-bit  instruction counter 
register.     PPR.P specifies that this is a privileged 
procedure. 

PRn(0-7):     There are  8 pointer registers directly addressable by the 
programmer.    They are used to store indirect addresses to 
segments  that are frequently referenced.    Their use avoids 
the extra time required to make an indirect reference 
through core.    The fields are functionally the same as 
the corresponding fields in TPR and PPR. 

IR: Indicator Register.    This register contains  the indicator 
bits,  error flags, and mode bits  for various conditions 
found on conventional machines. 

BAR: Base Address Register.     For downward compatability,  the 
6180 can  run as a 6080 by entering the BAR mode.    In this 
mode all  addresses within a segment  are one dimensional 
addresses  relative to the value  in this register. 

Xn(0-7):       Index Registers.    These  8 registers  are general 18-bit 
registers  that can be used  for  indexing in a conventional 
manner. 



Operations Unit  Registers 

The Operations Unit contains the three programmer working 
registers:     accumulator  (A), quotient   (Q),  and exponent  (E);  and 
two registers for  timing:     timer register  (TR)   to provide a 
relative time base and calendar clock (CCR)  that contains a 
current time. 

0                                                                             17    18 35 

A 1                            AU                                      '                                AL 

0                                                                                      17       18 35 

0 i                             QU                                         i                                   QL 

0                               7 

E [   EXPONENT    1 

0                                                                                    23 
TR |                      2 MICROSECOND   COUNT 

51 ( 
CCR j                     CURRENT   TIME    IN   M IC,"'OSECONDS SINCE JAN 1,     1901 

[Tl.4l ,8991 

Figure 4.    Operations Unit Registers 



Appending Unit Registers 

The Appending Unit  is used to implement  the DAT algcrithm. 
There  are no registers  that can be associated with  the Appending 
Unit  as such,  however the unit deals with two data structures in 
core  that it must  also store internally.     The segment descriptor 
word  (SDW), which is  actually a double word,  and  the page table 
word  (PTW)  are  illustrated in Figure  5. 

SDW 

PTW 

23   24 32    33     34     35 

|                        ADDRESS Rl R2    | R3 F FC    j 
■ BOUND^ R E W   j   P   |  U G CL           ! 
0    1              14        15       16       17       18       19       20             22                                  35 

0                                                                               17 1823       2628  29       33     SU             35 
\                        ADDRESS S ^»m* 'i'\   "   1 

Figure  5.     Appending Unit Registers 

SDW:     This double word contains vital information concerning the 
segment currently in use. 

ADDRESS:      Absolute core address  (mod 64)  of page table for seg- 
ment,  or address of segment if not paged. 

Rl,  R2,   R3:     Ring numbers  (0-7)  determining  read, write, 
execute,  and call brackets  as  follows: 

Read bracket is U   - r<2. 
Write bracket  is 0 - Rl. 
Execute bracket  is Rl.   - R2. 
Call bracket is  (jv2+l)   - R3. 

F: If off, a directed fault is to take place when this 
se&nient is referenced. 

FC: 11 F is off, tho fault code contained in this field 
is used. 

10 



BOUND:   Highest 16-word block of segment that can be 
addressed. 

R, E, W: Read, execute and write permit indicators.  If on, 
access is permitted provided ring bracket is 
satisfied. 

P:       If on and processor is executing in ring zero, the 
privileged mode is entered. 

U:       If on, segment is unpaged. 

G;      Gate indicator.  If off, calls to this segment must 
be directed to an address less than CL. 

CL:      Call limiter, above which calls to this segment may 
not be made. 

PTW: This word contains information about the current page being 
accessed. 

ADDRESS: Absolute address of this page in memory. 
S:      For use by software 
U;       If on, page has been used. 

W:       If on, page has been written into. 

F, FC:   Same as for SDW. 

The Appending Unit also contains  two associative memories: 
one holds  the last  16 SDW's  and the other holds  the  last  16 PTW's 
that were  referenced.     Along with all the  information  from the SDV 
or PTW,  the segment and page numbers associated with  these are saved 
so that an SDW or PTW can be  identified by an associative  search. 

PROCESSOR OPERATION 

This subsection discusses the operation of  the processor in 
four parts.     The  first  two discuss address preparation,   the instruc- 
tion cycle,  and Interrupts  in general.    The last two parts discuss 
the same subjects  in more detail. 

II 



Address Preparation — General 

Address preparation  for an operand  is defined  to be  the cal- 
culation of a two-dimensional address  (segment number,  offset)  that 
addresses the operand  in virtual memory.     Conversion of  this virtual 
address  to a physical address  is referred  to as DAT.     In  the 6180, 
DAT can be  thought of as  a subroutine that  is called whenever a 
memory reference is made  in  the append mode of operation.     Address 
preparation involves  the  indexing and fetching of  indirect words 
necessary to determine  the offset and sometimes  the  segment  number 
of the operand  referenced by an instruction.     Each memory reference 
made through DAT requires  reference to the segment descriptor word 
and page table wor.'  for  the word being referenced,   thus making it 
possible  for various   faults  and access violations  to occur  any  time 
DAT is used.     Since words  are  always  fetched in even-odd pairs, 
which must of course both be  in the same page,  DAT need only operate 
with the even part of  the  offset. 

DAT should be  thought  of only as an address  translation, 
separate from the memory access  to the location referenced.     The 
reason for excluding  the memory access  from DAT is  that  DAT is in- 
voked  (at least conceptually)   at certain  times merely  to  check on 
the validity of a virtual address without  requiring any  reference to 
the contents of  the address.     The DAT subroutine has  as  input  two 
arguments and returns  an output or generates a fault.     The  input 
arguments are  (1)   the  type of access desired   (read,   read/write, write, 
or execute)  and   (2)   the virtual address   (segment  and offset).     The 
returned value,   if no  fault  is generated,   is the  2A-bit  absolute 
address.    A "fault"  is  generated when the virtual address   is not 
"in core." 

An example of  the case where no memory acc?s.:  to the  operand 
is made at  the  time DAT  is  invoked is the store  _ns cruet ion.     The 
sequence of events  for a store  instruction is 

(1) calculate address  of operand, 
(2) call  DAT to  check on write access, 
(3) execute  instruction,  and 
(A)    store value  into absolute address  returned previously 

by DAT. 

12 



The 6180 implements  the Multics ring mechanism in hardware. 
Rings can be  considered  to be a generalization of  the  user-supervisor 
modes, where inner  (lower numbered) rings have more privilege 
than outer  (higher numbered)  rings.    Eight rings are provided, with 
the most privileged supervisor routines in ring 0 and user routines 
executing in rings 4-7.     A process executing in an  inner ring has all 
the access capabilities it has in an outer ring.    Thus when a pro- 
cedure in an inner ring is called from an outer ring,   the current 
ring of execution is charged to the ring of the inner procedure and 
access is allowed to all  data that the previous  (outer)   ring had 
access to,  plus new access as  required by  the  inner ring.     The ring 
protection mechanism requires  that the current ring of execution be 
saved in a register,  and  that each segment descriptor word specify 
the rings from which access  is allowed to  that segment. 

One of the important aspects of the ring mechanism is that a 
procedure in an inner ring can assume the more restricted access of 
an outer ring,   if desired, without changing the current  ring of execu- 
tion.    The need for this  capability is best illustrated in the case 
where a user routine executing in ring 4,   for example,  calls a 
supervisor routine in ring 1.     The user supplies arguments pointing 
to data areas within segments accessible to his own ring  (4).    The 
supervisor makes reference to these arguments through pointer re- 
gisters containing the segment number and offset of the arguments, 
and the ring number of the user.    The effective ring number,  computed 
with each effective address,  is the maximum of the ring number in the 
pointer register and the current ring.    This effective ring number, 
not the. current ring number,  is used to determine  the  type of access 
allowed for the reference.    Thus the user cannot  force  the supervisor 
to make reference to segments the user didn't have access to in the 
first place.    Moreover,  each indirect word pointing to another seg- 
ment contains a ring number.    Thus the user can transmit pointers 
from arguments passed to him from an outer ring (such as ring 5)  to 
the supervisor.    The supervisor, when referencing such an indirect 
word, will have as its effective ring number the maximum of:    super- 
visor ring  (1), user ring (4),  and indirect word   (5).     The user pro- 
gram in ring 4 could of course modify the ring number 5 in the in- 
direct word, but even if it made it less than 4,   the pointer register 
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that contains  the user ring number would force  the access privileges 
back to those of ring 4. 

Instruction Cycle and Interrupts — General 

A machine cycle  flowchart  for a typical  computer would appear 
as in Figure 6, where interrupts could only occur between instruc- 
tions.     In such a machine only  the registers available  to software 
need be saved at an interrupt,  and the details of  the boxes  "pre- 
pare operand address" and "execute instruction" do not affect this 

FETCH 
INSTRUCTION 

1     I  Uft 
"1 ADD 

PRtPARE 
I OPERAND 

RESS 

EXECUTE 
INSTRUCTION 

in 
•I   INTERRUPTS! 

Figure 6.    Typical Machine Cycle 

structure.     In the 6180 such a situation cannot be tolerated because 
the many references  «o DAT required during the operand address pre- 
paration phase can generate faults  (which are processed just like 
interrupts).    At fault time the internal machine state must be saved 
in sufficient detail so th it a return from the fault handler can 
restore the machine to the proper point in the operand address 
preparation,  allowing the process to resume as if the  fault had 
never occurred. 

Figure 7 shows mere of 
The horizontal line of boxes 
part of the address preparat 
an independent cycle of the 
checked for at defined times 
operand fetch, and execution 
generation of a fault (which 
and the testing for the  faul 

what the 6180 instruction cycle is like. 
represents different "cycles".    Each 

ion that contains a call to DAT must be 
machine.    Interrupts and faults are then 
between cycles during instruction fetch, 

Note the distinction between the 
occurs in DAT somewhere In the cycle) 

t for the purposes of generating the 
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interrupt after each cycle.  This separation is required because 
other kinds of faults and interrupts could occur from outside the 
DAT, and,to provide an orderly means for determining priority, 
interrupts and faults must all be detected at once. It is 
intentional that only one box was shown for "execute instruction". 
There appears to be no reason for interrupting the execution of 
normal (not multi-word) instructions during their execution because 
all necessary calls to DAT for argument validation have been made 
previously. The exceptions to this rule might be the transfer and 
call instructions whose operands need validation by DAT in the 
execute cycle, but the manner in which these exceptions are handled 
is not clear from available documentation. 

(STATE? 

FETCH 
INSTRUCTION 

> 

ADDRESS 
PREPARATION 

PART I 

ADDRESS 
PREPARATION 

PART2 

i 
/     ANY  FAULTS 

OR INTERRUPTS 
S      ? 

YES 

PROCESS FAULT 
OR INTERRUPT 

EXECUTE 
INSTRUCTION 

NO 

I*-4l.*0s] 

Figure 7.  6180 Instruction Cycle 
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The box at the top of Figure 7 called "state?" determines 
vhich cycle is to be entered next as a function of various internal 
flags and bits. At an interrupt this state must be saved, along 
with several internal registers and intermediate results not 
normally available to software.  Software saves this state (reflected 
in a "snapshot" of the CPU taken at interrupt recognition time) in 
core with the first instruction of an interrupt or fault routine, 
and restores this state on return to the interrupted program. Under 
some conditions it is necessary for software to examine and modify 
the saved state data. 

The data saved on an interrupt by the "store control unit" 
(SCU) instruction contains 8 words that include both the even 
and odd numbered instructions currently in execution, the in- 
struction counter, etc.  Saving of both even and odd instructions 
is necessary on the 6180 because the execution of the even instruc- 
tion takes place at the same time as part of the address preparation 
for the odd instruction, and memory works in double word widths. 
Of course, proper handling of faults and interrupts also requires 
saving of the software accessible registers, but this saving is 
handled directly by the fault handling software. 

Up to this time the EIS multiword instructions have been 
ignored for the sake of simplicity.  The main confusion arising 
when multiword instructions are considered is that these instructions 
can handle very long strings that can cross page boundaries, and 
thus must make DAT references many times during their execution. 
The EIS processor also has 8 additional words of information that 
must be saved on an interrupt, by software using the SPE instruc- 
tion.  The EIS processor can probably be represented in Figure 
7 by adding one or more "execute EIS instruction" boxes that con- 
tain DAT references.  Because the EIS instructions go through re- 
petitive loops, the understanding is that these additional boxes 
may be reentered many times before the instruction is complete. 

Address Preparation — Detail 

All non-EIS instructions save a few go through the same 
address preparation cycles.  EIS multiword instructions go through 
their own address preparations for each of one to three descriptors 
following the instruction, and most single word EIS instructions have 
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yet another similar b-jf- not identical method of address preparation. 
Most of  the following discussion will be exclusively for the non- 
EIS instructions, with general remarks about differences due to the 
EIS instructions. 

17   18 27 28    29     30 35 

y OPCODE I PR Tm Td 

TAG 

Figure  8.     Ger.Tal  Instruction Format 

All non-EIS instructions have  the "general instruction format" 
as shown in Figure 8.    The operand referenced by the instruction is 
pointed to by the 18-bit address in the "y" field, specifying an 
offset  in the current segment.    The TAG field is a complex field 
specifying what modifications are to be performed on the value "y" 
to transform it into a final offset "Y"  that points to the actual 
operand.    Modifications include indexing and indirection.    The first 
part of this discussion will be concerned with modifications that 
generate an offset Y in the current segment while the  last few 
modifications described all reference data within another segment. 

The tag field, expanded into two subfields,  is shown in Figure 
9.    The major modification category is specified in the Tm Tie' !. 
The Td field specifies either a register  (for R, RI,  and IR)   or more 
detail on the type of modification in the case of IT modification. 
A general sunnary of the various modifications follows, but first it 
might be helpful to discuss the general format of the indirect word, 
illustrated in Figure 10.    Note that  the indirect word format is 
similar to the instruction format with the opcode missing.    Any 
reference made to a word designated as indirect will be subject to 
the same modifications as the original instruction,  thus permitting 
any number of levels of indirection.     Indirection ceases usually 
when the tag of the indirect word specifies no further Indirection. 
Note that the tag of an indirect word or Instruction usually specifies 
what modification is to be performed on the y field of the current 
indirect word, and whether  the next word fetched is to be interpreted 
as an indirect word or not. 
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Figure 9.     Tag Field 
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Figure 10.  Indirect Word 
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Address Modification.      The  four modifications  specified in the 
Td field are summarized as follows: 

R     Register. 
The register specified in the Td field is to be added to 
the value y to form the 18 bit offset of the operand. No 
indirection takes place. 

RI    Register, then indirect. 
The register in the Td field is added to y as for R modi- 
fication, but the result is an offset which points to an 
indirect word whose y and TAG fields are interpreted 
further. 

1R    Indirect, then register. 
The y field points directly to an indirect word.  The 
register specified in the current Td field is added to 
the resultant offset after all further indirection is 
complete.  If one of the subsequent indirect words also 
specifies IR modification, then the Td field of that word 
selects the register to be added, and the original Td 
field is ignored. 

IT     Indirect and tally. 
The y field points to an indirect tally word whose con- 
tents is interpreted in a manner determined by the 
original Td field. 

The registers selected by the Tm field for R, RI and IR modifications 
are described as follows: 

N     No modifications. 
y becomes the offset. 

X0-X7  One of 8 index registers. 
Xn+y becomes the offset. 

AU,AL  Upper or lower half of A register. 
AU+y or AL+y become the offset. 

QU,QL  Upper or lower half of Q register. 
QU+y or QL+y become the offset. 
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IC Instruction counter. 
IC-l-y becomes  the offset. 

DU.DL        Direct  upper or direct lower. 
This  specifies that y itself is  the operand, rather than 
the address  of the operand.     18 bits of  the operand are 
always zero,   and the  18 bits of y become the high or low 
half of the operand.     This modification obviously makes 
no sense for store instructions. 

For the IT  (indirect and tally)  modification,   the Tm field does not 
specify a register, but can take on one of the following values that 
determine how the indirect word  is  to be interpreted. 

I Indirect only. 
The y field of the indirect word is the address of the 
operand,  and the tag field of the  indirect word  is 
ignored.     No  further indirection occurs. 

ID Increment address, decrement  tally. 

17    18 29   30 35 

TALLY    mmm 

Figure 11.  Indirect Word:  ID, DI 

In this mode the indirect v rd is interpreted as in 
Figure 11.  The y field of the indirect word points to the 
operand as for I modification, but after operand fetch the 
y field is incremented and the tally field is decremented. 
If the tally becomes zero after decrementing, the tally 
runout indicatr.r is set. 

DI     Decrement address, increment tally. 
The indirect word is interpreted as for ID (Figure 11). 
Operation is similar to ID except that the y field is 
decremented, the tally is incremented, and then the operand 
is fetched. 
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IDC    Increment address, decrement tally, continue indirection. 
The indirect word is interpreted as in Figure 12. Opera- 
tion is identical to ID, except that indirection can con- 
tinue as specified by the tag field of this indirect word. 
Note that the tag field was ignored for ID and DI.  There 
is one restriction on the contents of tnis tag field:  If 
Td specifies R or RI, Tm must specify N (no modification). 
Td may specify IT or IR, for which there are no restric- 
tions. 

0 1 7 18 29 30               3 5 

y TALLY TAG 

Figure 12.  Indirect Tally Word: ire, DIG 

DIG    Decrement address, increment tally, continue indirection. 
This mode is identical to DI, except that indirection can 
continue as for IDG with similar restrictions. 

AD     Add delta. 

Operation is similar to ID, except the y field is incre- 
mented by the value of delta contained in the tag field of 
the indirect tally word. The tally field is still decre- 
mented by 1. 

17 18 29 30 35 

y TALLY DELTA 

Figure 13. Indirect Tally Word: AD, SD 

SD    Subtract delta. 
Similar to DI except that a delta in the indirect word is 
used to decrement the y field as for AD. 
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SC Sequence character. 
In this mode,  the indirect tally word,  interpreted as in 
Figure 14,  is used to address a character operand.    Bit 30 
specifies whether the character is a 6 or 9 bit character, 

17  18 29 30 33     35 
C S |^| CHAR TALLY 

T CHARACTER SIZE:   - 
0= 6 BIT  CHARS 
I = 9 BIT CHARS 

Figure 14.  Indirect Tally Word:  SC, SCR, CI 

SCR 

and CHAR is the character number within the word oointed 
to by y. Operation is similar to ID. Each reference will 
increment CHAR until it becomes 5 or 3, depending on the 
character size. On the next reference CHAR will be set to 
zero and y will be incremented. In this manner sequential 
characters in a continuous string are referenced. 

Sequence character reversed. 
Operation is parallel to DI, where the indirect word is 
Interpreted as for SC. The character count goes backwards 
until it reaches zero. Then the y field is decremented by 
one and CHAR is set to 5 or 3. 

CI    Character from indirect. 
The tally word is interpreted as for SC, but on each re- 
ference only the tally field is modified, thus permitting 
repeated references to the same character. 

ITS    Indirect to segment. 
This modification is not a tally word modification.  The 
ITS modifier, appearing in the tag field of an even ad- 
dressed indirect word, specifies that the indirect word 
and the following word are used to address a location with- 
in another segment. This word pair is shown in Figure 15. 
The segment number and offset specify the location, and 
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the tag field of the second word determines what types of 
normal modifications are to be made to the new offset. 
The ITS modifier may only appear in an even addressed 
indirect word, and not in the instruction. The RN field 
specifies the ring number whose access privileges are to 
be used when making this reference. The BITNO field is 
used to address bits for EIS instructions. 

0 17 18    20   21        26    27    29 30            35 

1                   SEGMENT RN '////////////1 ITS     1 
OFFSET '////, BITNO x/////t TAG 

Figure 15.  ITS Word Pair 

ITP    Indirect to pointer. 
This modifier is used in a manner similar to ITS, except 
that the first indirect word specifies a pointer register 
(PR) instead of a segment number.  This pointer register 
contains a segment number, offset, and ring number, and 
the offset in the second word is added to the offset in 
the PR to form the new offset y which becomes the base 
for further address modification specified in the tag field. 

2 3 I 7 2 I 26 30   35 

W////////////////7777' 

Figure 16.     ITP Word Pair 
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FT1-3  Fault tag 1-3 
When this modifier appears in an indirect word or word pair, 
a directed fault is generated.  This fault may be inter- 
preted by software in any way desired, and it is up to 
software to set this fault code in the indirect word. 

One further type of modification, which takes place before any 
other type of modification, and may only be specified in the original 
instruction, is a reference through a pointer register (PR).  If PR 
is specified by a bit in the instruction, as in Figure 17, then ref- 
erence is first made to one of the 8 PRs specified in bits 0-2. The 
remaining part of the y field, interpreted as a signed 2's complement 
number, is added to the offset in the PR to determine the initial y 
value to be used for further modification.  The tag field is inter- 
preted as usual.  This mode allows reference to another segment with- 
out using an indirect (ITS or IIP) word pair. 

2 3 I 7 IB 27 28  29 30 35 

PR# y OPCODE I 1 TAG 

Figure 17. PR Modification (bit 29=1) 

DAT Details.  Figure 18 illustrates how DAT works. As men- 
tioned earlier, the inputs to DAT are the virtual address (segment, 
offset) and the type of access desired (read, write, or execute). 
The DAT returns an absolute main memory address of the word refer- 
enced. In Figure 18, the TPR contains the virtual address. The TRR 
field contains a ring number that is initially the current ring of 
execution (PRR) taken from the PPR, but may later (after a level of 
indirection to another segment) assume a higher value (and therefore 
less access) if specified in the indirect word. There is no way for 
TRR to be less than PRR. Refer to Figure 18 for the following steps. 

1. The DSBR points to the first word of the page table for the 
descriptor segment. This page table contains a word for 
every page in the descriptor segment. 
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2. The segment number (TSR) can be thought of as a two part 
address where the high 5 bits point to the page table word 
(PTW) and the low 10 bits point to the offset within the 
page.  This step consists of adding the DSBR value to the 
high part of TSR to obtain the absolute address of the PTW. 
The PTW contains the address of the page, flags that are 
set by hardware when the page is written into or referenced, 
and fault bits set by software that indicate the kind of 
fault to be generated when this page is referenced.  Usually 
the fault bits are used to signal the fact that the page 
desired is not in core.  If such a fault occurs, DAT exits 
immediately, setting the appropriate fault indicator for 
subsequent testing at the end of the current cycle. 

3. If no fault is specified, the PTW's address field is used 
to get to the address of the beginning of the page of the 
descriptor segment that contains the segment descriptor 
word (SDW). 

4. The low part of TSR is an offset into this page, and the 
SDW is fetched as a double word.  The SDW contains fields 
describing the segment to be referenced.  Besides specifying 
the address of the page table for the segment, the number 
of pages in the segment, and faults to be generated if the 
page table is not in core, it also describes the kind of 
access the current process has to this segment.  The 
access field allows read, read/write, or execute privilege. 
The ring fields contain ring numbers specifying from which 
rings each of these accesses are permitted, and a call field 
specifies at what point entry can be made into this segment 
via a CALL instruction (which can change to an inner ring of 
execution).  A ring field also specifies the new ring number 
to be loaded into the PRR when the segment is properly called 
using the CALL instruction. 

5. If no fault is generated from the SDW (either due to an 
illegal reference or missing segment) then the address of 
the page table is determined. 

6. Assuming IK pages, the high 9 bits of the offset or current 
address (CA) are an index into the page table for this seg- 
ment, and then the PTW is fetched and treated exactly as in 
step 1, with a possible fault being generated. 
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7. This step corresponds  to step  3, where  the actual address  of 
the page containing the word referenced  is determined. 

8. The low 10 bits  of CA point  to the location within the page 
that contains the word referenced, and the absolute address 
of this word is  thus determined.    This absolute  address  is 
the output  from DAT. 

In the worst case three memory references will be needed to 
determine the address of a word in core. It is possible for the 
descriptor segment or the segment referenced not to be paged, so 
that the DSBR or SDW point to the segment itself rather than a page 
table. In such a case the offset into the descriptor segment or 
referenced segment  is the  entire  TSR or CA field. 

In order to  reduce  the  number of memory  references  required, 
a  32 word  (60 bit?)  associative memory  (AM)   is used.     Sixteen words 
are used  to save PTWs and  16 words are used  for  SDWs.     Each  time  a 
PTW or SJW is  fetched  from core by DAT, it  is inserted  into the AM, 
replacing the least  recently used word.     If a particular  PTW or SDW 
is desired  (as  identified by  its page number and'or segment number 
which are also stored in  the AM),   the AM is  first searched,  and  if 
the word is  found the reference  to memory n«jed not be made  for   that 
word.     Since both the segment number and page number can be deter- 
mined  from the virtual address  in TPR (steps 2 and 6 above)   the 
associative searches  for both  the  SDW and PTW can be made simultaneously. 
If  the  SDW is  found, but  not  the PTW,  then DAT must make a memory 
reference to get  the PTW.     If  the  PTW is  found,   the SDW  is  not 
needed,  since  the PTW contains  the  address of  the page.     Along with 
each PTW in the AM are stored  the  access bits and  ring numbers   for 
the  segment  of which  that  PTW is part.    Thus access  rights may be 
checked without looking at   the SDW.     Searching of  the AM does not 
appear to consume any additional  time, so that  there  is nothing 
wasted  if the search fails. 

It should be noted  that  the AM containing PTWs may  contain 
two PTWs from different  segments  that are  from the same  relative 
locations within their segments.     This means that PTWs  in  the AM 
must be  identified not only by  their offset  in their segment's 
page  table,  but by  the segment  number as well.     This  then makes 
it completely unnecessary   to reference the SDW if the  PTW is  found. 
The  actual  details of  the AM search are not known,  nor is the 
exact  format of the AM words.     This information is available  for 
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the  645,  and is  likely to be similar  for  the 6180,  the basic 
differences being that for the 6180 only one search of  the AM is 
ever necessary,  and that there are more  fields  (ring access) 
that must be stored with each word. 

Software has  the ability  to  clear the AM,  save its contentr, 
and  reload  it.     Clearing of the AM  is necessary whenever a processor 
removes a page  from core.     Loading and storing seem only  for use 
in diagnostics. 

Figure  19 is a flowchart of DAT,  ignoring the use of associa- 
tive memory.     It is assumed  that  references are all made to core. 
Reference  to a segment with a CALL or RETURN instruction probably 
should be  included in DAT as  another  type of access because the 
SDW must be  fetched and examined in a manner similar to that  for 
the other  types of access.     Note  that a write into memory is re- 
quired to set the "written" or  "used" bits in the PTW.     Such a 
write must occur even if  the PTW is  obtained from the AM and  the 
bit was not previously set. 

Address Preparation Flowchart.     The flowchart in Figure  20 
is  a partial reconstruction of  the  effective address preparation 
and  instruction fetch cycles.     Some of  the less important IT 
modifications are not  included.     The  flowchart uses certain 
flags and registers internally  (PZ,   CT,  TRZ, PT).    The reference 
to INS is to a register containing  the current instruction and 
later various temporary tags.    IND is a double word register con- 
taining the even and odd indirect words.    Names of the various 
parts of IND,  such as IND.BITNO or IND.TALLY refer to the corre- 
sponding fields in the format of the type of indirect word refer- 
enced.    Reference to the even or odd IND word is implied by the 
name of  the field or whether the indirect word is an even or odd 
location. 

Ideally this flowchart should represent the address prepara- 
tion exactly.    However,  the complexity of these sequences forced 
us to adopt certain simplifications in order to make this task 
more reasonable.    Those points not covered in the flowchart are 
discussed below. 

Almost every 6180 instruction has  certain modifications  that 
are illegal.    On the 645,  an  illegal modification causes an 
unpredictable result,  so such cases were ignored  (and would 
likewise produce inconsistent  results from the flowchart). 
The flowchart was made before  it was known that  the 6180 
generates a fault  in every  case an  illegal modification 
is used.     This  feature of  the  6180 required that  in order  to 
detect  such a fault,   checks have  to be made at various points 
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within the flowchart against  the opcode of the instruction. 
The instructions could be grouped into  classes  (but not by 
particular bits in the opcode)  for determination of illegal 
fault-generating modifications. 

The actual machine cycle,  as discussed previously and 
illustrated in Figure 7,  shows the address preparation 
split up into independent units.    Presunably this split 
would require many more  flags  to  indicate whaL the  current 
cycle is.     The 645 had five cycle flags,  two of which corre- 
spond to the PZ and FT flags in the flowchart.    The other 
three were not needed in the flowchart representation.    Other 
flags and registers are also necessary for communication of 
state between cycles. 

The  fact  that the 645 and 6180 both fetch double words requires 
additional  flags and tests  to determine which word is being 
processed.     This requirement not only applies  to the even or 
odd instruction, but also to the even or odd indirect word. 

The  6180 and 645 have various repeat modes.    A repeat instruc- 
tion fetches the next one or  two  instructions and repeatedly 
executes  them until a termination condition specified in  the 
repeat  instruction is satisfied.     The  instructions executed 
during the  repeat mode have many more  restrictions placed on 
the types of address modifications they may use.     In addition, 
address modification is different  for each of  the two Instruc- 
tions in  the repeat double mode,  different on subseque.it 
repeats,   and a function of bits  in the  repeat instruction  that 
change address modification for  each of  the repeated instruc- 
tions separately.     Tests for end of repeat  (termination 
condition satisfied) also have to be made.    This  confusion 
required us to temporarily abandon the  treatment of address 
modification during the repeat modes. 

In reality, the flowcharts  for  the address preparation should 
be  an order of magniture more complex — not to take care of  the 
failures mentioned above,  but  due  to restrictions in certain modes 
and slight differences in operation among similar modes.    As an 
example,  consider the register modifications DU and DL.     Figure 20 
doesn't  treat  these in any special way,  but clearly the notation 
R(lNS.Td)  makes no sense,  and must be handled differently,  for 
this modification.    In addition, whenever DU and DL are used,   a 
flag must be  set to indicate  that no memory  fetch is required  for 
the operand. 
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Instruction Cycle and Interrupts    — Detail 

As mentioned earlier,   the instruction cycle illustrated in 
Figure  7 is not quite accurate.    There are instructions which make 
reference  to DAT as part  of the execution cycle  (or before 
execution but after address preparation).     Moreover,  address 
preparation is only defined as  the  construction of an effective 
virtual address of the operand.     For most  instructions  the operand's 
absolute address must be determined   (requiring a call to DAT) 
so  that the operand can be loaded or stored.    Note that the  only 
calls made  to DAT during address preparation are for  fetching of 
indirect words.    We have attempted to construct a flowchart of 
what  happens  after address preparation  (Figure 20)  and before 
instruction execution in a form similar to that for  the address 
preparation.     This means  that  the possibility of faults or 
interrupts being generated is  ignored. 

Instruction Cycle.       Figure  21  is our best representation of 
the  Instruction cycle after address preparation that can be made 
without more 6180 documentation.     For purposes of this representa- 
tion  all  Instructions can be divided into  seven groups,  each of 
which  is discussed below.    Most of  this  information has either been 
deduced or taken from Schroeder and Saltzer [ 1 ] — little came  from 
Honeywell  documentation.     Therf  are several problems which currently 
prevent us  from going into more  detail. 

1.     Instruction does not reference operand. 

This group includes  Instructions that neither  store nor 
load data into memory nor cause a transfer of control.     In 
this group would be the shift instructions,  the repeat 
instructions,  and a  few others  that only reference registers. 
There is one inconsistency which should be mentioned at   this 
point.    Certain of these instructions  (e.g. ,  the shifts) 
go  through the normal address preparation phase,  generating 
page  faults or whatever  is necessary to determine  the 
effective address of  the operand.     In the case of shifts, 
the  resultant offset part  of  the effective virtual  address 
is  interpreted as a shift  amount,   and the operand  itself 
and segment number are  ignored,.     Other instructions,  how- 
ever,  such as  the repeats,   use  their tag and y  fields for 
controls, and  therefore  are not  subject to address pre- 
paration.    This means  that a check must be made  for  in- 
struction type before address preparation so that  those 
cycles are bypassed.     Figure  20,  on the other hand,   assumes 
that all instructions are  treated  in the same way.     There 
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Figure 21.    Instruction Cycle 

are even other instructions  that  use  their tag field for 
control,  but their y  field contains  the address of the 
operand.     This means  that  some of the address preparation 
(PR modification and offset calculation)  takes place,  but 
not all of it.    Tests  for  these  instructions would have  to 
be made  in appropriate places within the  flowchart in 
Figure  20. 

2.     Instruction only  reads operand. 

These include the obvious group of  loads,  arithmetic, 
and  logical instructions  that  leave  their result in a 
register.     For these instructions DAT(read)  is called, 
requesting validation and  formation of  the physical address 
of  the  operand.    The actual  reading of memory is delayed 
until  the execute instruction box because not all  instruc- 
tions  read their operands  in exactly the same way.     For 
example,  certain load register instructions  read 8 or  16 
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consecutive words.  It also seems cleaner to keep the memory 
reference inside the execute instruction box so that each 
instruction can do what it wants with the absolute address 
supplied to it. 

3. Instruction writes operand. 

This  group contains all  the  store  type  instructions 
that  need not  read  the  location  to be scored. 

4. Instruction reads  and writes   operand. 

This  group contains   ins it act ions  such as  "add  storage 
to  accumulator and place  result   in storage"  that must  read 
and write   their operands,   and   thus  both  read and write  access 
is  required. 

5. Instruction  transfers  to operand. 

Treatment of  these   instructions  here   is not  entirely 
satisfactory.     Figure  21 shows  a call   to DAT, with check 
for execute privilege,  before   "execution" of   the  transfer. 
This  is not really necessary beccrase  execute privilege   is 
already  checked   for before   the   fetch of  the  next   instruc- 
tion   (see  Figure  20).     However,   as  Schroeder & Saltzer[lJ 
point  out,   it  is desirable   to check   for   legal access before 
making  the  transfer,   so that   a possibly   faulting  transfer 
instruction can be  located  using  the   old  instruction  counter. 
The  placement of  the call  to  DAT  in  Figure   16  allows   for 
this  check,  but is not  good because,   in  the case of a 
conditional transfer whose  condition  is not  satisfied,   it 
would  be  a waste of  time  to  call  DAT with accompanying 
page   faults  that may occur.     This  problem could easily  be 
gotten  around by  treating transfer  instructions differently 
from other instructions,  but  Schroeder & Saltzer's 
diagrams seem to indicate  that  this  distinction is  not 
made. 

6.   &  7.     The  CALL and RETURN  instructions  are   the only  instructions 
that   can  change  the  ring of  execution.     For   the sake  of 
parallelism here it  is assumed  that  the DAT routine has 
the capability of checking for call  or  return privilege. 
It would  be possible  to perform this   function  in  the  "execute 
instruction" box for CALL and  RETURN,   but  since most  of 
this   function  (fetching SDW's,   checking access)  is already 
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performed by DAT,  it seems proper  for  DAT  to do the call and 
return checks.     DAT also changes  the current ring number 
for  the new ring of execution.     The execution part of CALL 
and  RETURN  involves setting certain pointer registers  and 
determining of the stack segment number. 

One additional point that should be made  is  that for transfer, 
CALL,  and RETURN instructions,  the absolute address of the operand 
returned by DAT is not used.     Instead the actual transfer consists 
of loading the virtual instruction counter   (PPR)  with a new virtual 
effective address   (from TPR) and not with an absolute address. 

Interrupts and Faults.      The box at  the bottom of Figure 7 
called "process  fault or interrupt"  is,   after closer examination, 
much more complex than one would expect.     The 645 manual [3] would 
have one believe that the hardware's processing of an interrupt 
merely involves taking a snapshot of the CPU state and forcing an 
XED  (execute)   instruction into the instruction register to cause 
two  instructions  in  certain memory locations  to be executed.    After 
putting the XED opcode  in the instruction register,   the cycle flags 
need merely be set  to  force the machine  to execute  the XED instruc- 
tion.     If neither of  the  two XED'ed  instructions cause a branch, 
the next instruction  to be executed will be  the next  instruction 
in the interrupted program. 

In reality,   the processor never really "lets  go" after forcing 
the XED.    The hardware almost expects an SCU  (store control unit) 
in the even  location and a transfer  in the  odd  location of  the 
XED'ed pair.    If  this is not the case the control unit will not be 
saved and the Interrupted program can not be restarted.    The handling 
of these two instructions after an interrupt  is different from their 
normal handling.     In fact,  if the first instruction is not an SCU and 
the second not a transfer,  the interrupted process is likely to be in 
trouble.    The processor signals a "trouble" fault when something goes 
wrong with one of  these two instructions   (such as when the page refer- 
enced by the SCU is not in core).    These and other conditions mean 
that special tests have to be made by the hardware during and after 
address preparation for the SCU and transfer instructions on an 
interrupt. 
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SECTION 111 

EMULATION METHODOLOGY 

INTRODUCTION 

In order  to meaningfully compare  the effectiveness of emulations 
performed on different machines it is necessary   for all these 
emulations  to be based on a common methodology.     In this section we 
propose such a methodology.    The ultimate goal  of  this report is  to 
determine  the  feasibility of emulating the 6180 — not to present 
the  actual emulation.  Therefore  this  section only discusses  those 
features  of the  6180 that may have a significant effect on a "bench- 
mark emulation"  such as the one discussed in Section IV.     Certain 
important  features  of  the 6180 are not discussed because their effect 
on a benchmark,   is minimal. 

An attempt  has been made  to make  this  section applicable  to all 
potential microprogrammed emulators,   and thus   the architecture of 
the emulator  is  ignored.    However,   the current  state of the art of 
microprogramraable processors must be  taken  into  account in order for 
a methodology   to be useful.     For  this  reason we  discuss  typical 
hardware   limitations  that might be encountered,   and we consider 
various ways  to  deal with these  limitations. 

GENERAL  CONFIGURATION 

The  first   things  to determine  for any emulation are the  level 
— machine  language or higher  level  language  — at which the emu- 
lation  is  to  take place, and which  functional  units of the  target 
machine  are  ^o be considered.     For example,  emulation of a "Multics 
system"  at  the  user  level need only duplicate   the  features  available 
at  the  terminal.     Emulation of a large machine with an I/O channel 
may  include emulation of the I/O channel as well,  or may require 
the  I/O channel  as a piece of hardware. 

The emulation we are considering is an exact machine  language 
emulation.     The  emulator must be  completely  compatible with machine 
language  software   for the 6180.     The  only  difference allowed  is  a 
time difference:  we are assuming that  6180 software is not   time 
dependent enough  for a slowdown  to affect  its  proper execution. 
Certain  common practices of IBM 7090 days,  such as software  timing 
IOO.JS,  are  assumed not to occur.     It may be  that  for proper operation 
of some  external  devices,  two  instructions must be executed within  a 
specified  time  of each other,  but  this  only  requires  that the 

40 



emulator be "fast enough"  to handle those devices by normal pro- 
gramming methods.     The slowdown factor that might be considered 
reasonable or maximum for  the emulator cannot  at  this point be 
determined.     There are  too many variables  that  can affect ultimate 
performance of the 6180 in its normal Multics environment,   (memory 
size,  user load,   types of applications,  design of system software) 
and the emulator has no  control over most of  these.     Whenever we 
have tc make a decision between apparent cost or complexity and 
speed, we will rely more on intuition than calculated performance 
figures. 

The  6180 consists of several functional units  as  discussed in 
Section II.     Since  the  separation of these units  is not  detectable 
by software,  there  is no reason for dividing the emulator into such 
units.    The possibility  of  asynchronous operation of  the  functional 
units is not  important  since such operation only  affects  speed.    We 
will therefore assume   that one microprogrammable  CPU,  or one "emulator," 
is sufficient  to emulate  one processor.     The  usual 6180  configuration 
of several processors  and main memory is not software  independent 
(software  is aware of  the number of processors)  so a separate emu- 
lator would be required  for each processor.     However,   the ultimate 
purpose  in having multiple processors  is  only   for  increasing per- 
formance which is  again not very important at  this  time.     I/O channel 
operation must eventually be considered because  I/O channels are 
necessary and the  I/O multiplexors are  treated by software as separate 
asynchronous units.     Emulation of these units  is not discussed in this 
report due  tc  its minimal effect on a benchmark.     At  some  future 
time the  tradeoff between I/O multiplexor emulation and  I/O hardware 
has to be determined. 

Although it  is  not  necessary  to separate  the  emulator  into 
functional units,  one of  the units -  the appending unit - performs 
such a complex function  in essentially "zero"  time  that  a micro- 
programmed emulation  of  it would not be  feasible.     The  associative 
memory  is  the main  reason: without it,  three memory  references are 
required just  to determine  the address of a  location  in virtual 
memory.     A slowdown by  a factor of three or  four may not be un- 
satisfactory, but when one considers  that  this slowdown will be added 
to any other slowdowns  realized in the emulator,  associative memory 
hardware becomes  a necessity.    Moreover,   the  structure  of oynamic 
address  translation  is such that there  is not much  the processor can 
do while waiting for a PTW or SDW to be read  from memory.     It seems 
fairly  certain  that  any emulation will require DAT hardware that 
duplicates  the  function of  the DAT subroutine  illustrated in Figure 
19. 
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Another difficulty with the 6180 is the large number of registers 
available to the programmer and required by hardware.     If the machine 
doing the emulation has  sufficient register capacity,   this presents 
no problem.     However,  it  is more likely that some or  all of the 
registers in the 6180 will have to be put in places  such as core, 
control store,  or other memory units.     Judicious assignment of 
registers will have an important effect on emulator performance. 

MAIN   MEMORY 

n 
PROCESSOR I 

EMULATOR 
DAT 

H ARDWARE 
PROCESSOR 2 

EMULATOR 
DAT 

HARDWARE 

Figure  22.     Emulator Configuration 

The  complete  emulator configuration,  assuming DAT hardware is 
required,   is shown in  Figure 22.    A dual processor  is  used as an 
example.     For any one  particular source machine,   the  processor 
emulator might  require  additional hardware units.     Note  that the 
DAT hardware  is  complicated by the  fact  that  it too uust read and 
write memory   (for  fetching PTWs and SDWs  and writing PTWs).    However, 
DAT does not  really have a separate port  into memory because it never 
makes a reference  at  the same  time as its processor. 

Besides  the  DAT box,  additional hardware  is needed for implement- 
ing the calendar clock and timer registers.     It can be safely 
assumed that a typical  off-the-shelf microprogrammable machine does 
not have such registers,  and that emulation of these  timers through 
microprogramming or 1-microsecond interrupts is  too time consuming. 
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All other configuration  features of the 6180   (e.g.,   interleav- 
ing, overlap)  that normally just help to speed up performance 
are not considered at this point in the emulation,  but might 
be ultimately required in a given simulation.    Note that soft- 
ware can detect and use interleaving. 

MICROPROGRAM ORGANIZATION 

In Section II and Figures 6 and 7,  it was noted  that  the in- 
struction cycle of  the  6180 is not like that of a  "classical" machine 
because faults and  interrupts are allowed during the address prepara- 
tion and not  just between  instructions.     If the structure were as  in 
Figure 6, microprogramming the address preparation would be straight- 
forward,  though complex.     There would be no need  to  find  out exactly 
how the 6180 prepares  its addresses as long as correct results were 
obtained.    Programming of  the  instruction execution would also be 
straightforward. 

The fact  that  the address preparation is split  into several 
defined cycles   (of which  there are  5 on the 645)  puts a serious 
restraint on the freedom allowed to the microprogrammer.     He must 
now organize his microprogram so that faults and  interrupts occur 
at many specific points  in the  instruction cycle.     In addition, he 
must make sure  that  a return from an interrupt or  fault will restore 
the processor  to the point  it  left off.    The worst  restraint seems 
to be  involved with  the  control  unit status.    At  an  interrupt or 
fault,  eight words  of packed bits of information must be  available 
for software to save with the  SCU Instruction.     In programming the 
address preparation of Figure  20,   it may not be very convenient  for 
the microprogrammer  to  represent his microprogram state  in exactly 
the same way done by  the  6180 hardware, but it is absolutely necessary 
that  the state  stored by  the SCU instruction look  the  same  in core. 
One can imagine spending a great deal of  time packing flags and bits 
into the 8 words at each  interrupt so that they appear  in the proper 
format  for software.     Alternatively,  one  can imagine  firmware con- 
tinuously keeping its own state  in the right  format  ready  for storing, 
but comsuming time on each instruction interrogating its  flags be- 
cause  they are not  conveniently placed in its own internal  storage 
elements.     The  trick  is  to  find  the proper balance between representa- 
tion of microprogram state  in a defined format and packing and un- 
packing bits  at  interrupts — otherwise performance  is  likely to 
suffer. 

The flowchart  of  the address preparation in Figure  20 must be 
reorganized  into "cycles"  as  in Figure 7.     In addition,   the end of 
the address preparaticn,   represented In Figure  21,   has  to be worked 
in so that all are  consistent.     The cycle  flags,   shown  in Figure  3 
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(PI, PA,  etc.) must be used to determine which of  the address pre- 
paration cycles is  currently being performed.     Note that Figure 20 
does use several of  the  flags and temporary registers for its own 
state storage,  but only  to determine when certain conditions are 
illegal and to define the path of flow under certain conditions. 
Their use in the flowchart probably corresponds  to their use in the 
6180,  except that  the flowchart does not save or restore their values 
on faults.     For a full  explanation of these flags  and registers, 
refer to the 645 manual [3]. 

In Figure  7,   there  is one call  to DAT within each cycle.    Pre- 
sumably there  is no reason to define a cycle as  separate  unless it 
contains a call  to DAT.     It was noted previously  that,  although the 
fault is generated during DAT,   it is not detected until  the end of 
the cycle.     In other words,  the end of cycle  is  forced when any fault 
occurs  in DAT.     At  time of detection,  the interrupt handler is in- 
voked.    Later,  upon restoration of the control unit  status  the pro- 
cess should resume at  some appropriate point within the cycle. 
Ideally the return of control should be to the DAT algorithm that 
caused the  fault, with  the same arguments   (TPR and type  of access) 
that it had previously.   (Assuming,  of course,   that the TPR and 
other control unit bits have not been altered by software.) 

1 
DAT 

normal 
return 

abnor ma I   return 

rest  of 
cycle 

Ti^ure 23. Typical Machine Cycle 

What is required is an accurate portrayal of a typical cycle, 
with the location of the DAT call specifically indicated. The cycle 
could be thought of as a call to DAT first, followed by the rest of 
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the cycle, assuming that the TPR and access request are saved in the 
control unit's status.  In the 645 the SCU does save the TPR, but 
not the access request, though it is probable that the type of access 
required can be deduced from the cycle designation.  With this 
scheme each cycle can be drawn as in Figure 23. The DAT call has a 
normal return, which allows continuation of the cycle, and it has an 
abnormal return, in the case of a fault, that goes to the end of the 
cycle. 
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SECTION IV 

BENCHMARK EMULATIONS 

INTRODUCTION 

Given the precise description of the 6180 and a method for the 
emulation of that machine, it is now possible to discuss the emula- 
tion of the 6180 by the three selected microprogrammable processors. 
In a benchmark eimlation of the type to be developed here, it is not 
necessary, and indeed it would be highly impractical, to present the 
detailed emulation.  The goal is to emulate a representative machine 
function to assess the feasibility of the emulation and to gain a 
first-order approximation of the efficiency of such an emulation. 
The measure of efficiency used here will be expressed as the time to 
emulate the representative function relative to the time the 6180 
takes to perform the same function. 

An examination of machine language code generated for PL/I 
programs in Multics indicates that almost every reference to a data 
location is through a pointer register (PR). For this reason, and 
because a store is somewhat more involved than a load, the function 
chosen as representative is the store A instruction with PR modifi- 
cation and no indirection.  Simple register modification is assumed. 
The. instruction fetch and execute cycle for this example are shown 
in Figure 24.  The TABLE and INS data bases used in this flowchart 
are described in TABLE II as PL/I-type structures.  One main 
simplification introduced is that the call to the DAT algorithm 
produces no faults.  In making the comparison, it is assumed that 
indirection through the pointer adds no time to the instruction 
execution cycle on the 6180. Thus the benchmark emulations must 
follow the same path through the instruction cycle as that taken 
by the STA on the 6080 to allow a comparison with the 61tl0. 
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Figure  24.     Instruction  Fetch and Execute Example   (Store  A) 
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TABLE II 

Data Bases for Instruction Fetch and Execute 

1 TABLE (Array) FIXED BIN (22), 

2 M BIT(l), PERFORM MODIFICATION BIT 

2 X BIT(l), NO MODIFICATION ALLOWED 

2 D B1T(1), DU.DL MODIFICATION 

2 C BIT(l), SC.CI SCR ALLOWED 

2 E BIT(l), EIS INSTRUCTION 

2 S BIT(l), STORE TYPE 

2 DECODE  FIXED BIN (16);  POINTER TO MICR( 

1 INS FIXED BIN (36), 

2 Y FIXED BIN (18), 

2 OPCODE  FIXED BIN (10), 

2 EIS BIT (1), 

2 PR BIT (1), 

2 TM FIXED BIN (2), 

2 TD FIXED BIN (A); 

TPR 

PPR 
As previously defined (see Figure 3) 
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THE BURROUGHS D-MACHINE 

Description of the D-Machlne 

The Burroughs D-Machine, or Interpreter as it is sometimes 
called, is a modular, two-level microprogrammable computer with the 
capability for sophisticated interconnections between individual D- 
Machines.  The machine is best described by Reigel et al [llj and 
Binghem et al [l2] . The switching interlock, used to connect many 
D-Machines for multiprocessor emulations, is described by Davis et 
al [l3] .  The reader should consult the aforementioned references 
for detailed descriptions of the architecture and operation of the 
D-Machine.  The following description gives an outline of those D- 
Machlne features germane to the benchmark emulation. 

The block diagram of an interpreter is shown in Figure 25» The 
important characteristics of the interpreter are the two-level 
memory and the restricted number of key data paths and general 
registers. 

The two-level microprogram and nanoprogram memory of the D- 
Machine provide a wide control word (54 bit nano-memory width) with- 
out the disadvantage of needing large amounts of storage for the 
microprogram. The 16 bit microprogram word is either a pointer to 
a nanoprogram word or a literal.  Thus, any given emulation will be 
characterized by a small set (500 to 4000) of nanowords and a 
larger microprogram. 

The other important characteristic, that of limited data paths 
and general registers, works to the detriment of a sophisticated 
emulation. Where the emulated machine is characterized by a large 
machine state (as the 6180 is) or where the emulation requires com- 
plex microprogram interconnections (like stacked calls to micro- 
programmed routines), the D-Machine must be augmented to perform the 
emulation efficiently. These two deficiencies must be partially 
overcome for the 6180 emulation. 

Honeywell 6180 Emulation 

To perform the 6180 emulation in an efficient manner, the 
limitations alluded to above must be overcome. The lack of general 
registers can be alleviated by the proposed D-Machine enhancement 
to provide functional elements addressable by D-Machine logic.  Such 
an arrangement is shown in Figure 26 and exists on an operational 
D-Machine.  In the discussion of the emulation, these additional 
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Figure 25.    D-Machine  Block Diagram 
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Figure 26.  Function Elements Added to D-Machine 

registers will be assumed to exist, although no initial assumption 
will be made about their access times. Also, it is assumed that the 
TABLE data base is stored as a functional element. 

The DAT (Dynamic Address Translation) algorithm must be per- 
formed by the D-Machine as well.  To simplify the emulation it will 
be assumed that the necessary functional elements for the DAT emula- 
tion, such as associative memories are provided. 

With the above assumptions, it remains only to go throug'i the 
algorithm (the STA instruction) of Figure 24, making estimates of 
the time required by the D-Machine for each activity and commenting 
on the manner in which the activity is emulated. 

The flowchart for the D-Machine emulation of the 6180 STA 
instruction is shown in Figure 27.  The figures on the left of 
Figure 27 indicate the D-Machlne clock times needed for each D- 
Machine operation.  The symbols Fr and Fm stand for the time for a 
function register fetch and the time for a main memory fetch, respec- 
tively.  The field designations used on the D-Machine registers 
refer to the field within the 6180 word currently being emulated 
in that register.  For example, B.OPCODE refers to the INS.OPCODE 
field when the B register contains the INS data word. From the 
timings in Figure 27 it can be seen that the STA instruction emula- 
tion takes 48 D-Machine clock times.  If the Fr time is assumed to 
be the same as a D-Machine clock time (not an unrealistic assumption). 
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then the STA Instruction takes 55 clock times which at a 3 MHz or 5 
MHz clock rate represents  18 //sec or 11 ^isec respectively.     (Remem- 
ber that the STA instruction takes 1 |isec in a 6180.)    By resorting 
to the ECL circuitry,   instead of TTL,  and paying 50c/bit for the 
nanoprogram memory,  D-Machine clock speeds of 15-20 MHz could be 
achieved resulting in 3.5 /isec-2.7 ^isec execution times  for the STA 
instruction emulation.     In a discussion with Burroughs personnel, 
we were  told  that the transition to the higher speed circuitry is 
feasible. 

THE NANODATA QM-1 

Below is a brief description of the  features of  the QM-1 
unique  to that machine,   and details of  a benchmark emulation.    For 
a complete description of the QM-1 and its operation,   see the QM-1 
Hardware Level User's Manual  [lOJ . 

Description of  the QM-1 

The QM-1 is both micro and nanoprogrammable.     Nanoprogramming 
is one  level below microprogramming in the  sense that micropro- 
gramming Is a  level below machine language programming.     In the QM-1, 
the hardware structure, which represents register units,  data paths, 
and memory units,   is predetermined.    The control of   these units, 
however,  is completely under  the control of the nanoinstructions.    A 
nanolnstruction is composrd of many nanoprimitives  that specify 
operations to be performed in parallel in a single  clock time.    A 
nanoprimitive,   for example,  may specify  that  the data available on 
a particular bus be  gated to its destination.    Theoretically a 
maximum amount of parallelism can be achieved because the nano- 
lnstruction  is  sufficiently large so that all events  that can 
possibly take place simultaneously without conflict  can be specified 
in one nanolnstruction.     The basic nanolnstruction is  360 bits wide, 
and is divided into five 72-bit fields designated K,  Tl,  T2, T3 and 
T4.    All  the T  fields are identical,  and  at any one  time only the K 
and one of  the T's are active.    A T field in execution is referred 
to as a T-step.     The T fields specify gating functions and control 
and the K field contains  such things as  constants and function 
specifications  to be used by the T-steps.     Since  the  K field must be 
shared among all  four T-steps,  some T-steps often can not make use 
of the K field required by the other T-steps  in that nanolnstruction. 
Under such conditions  a T-step must be wasted. 
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The QM-1 has  an 18-bit structure for its main data paths,  and 
a 6-bit structure  for auxiliary data paths.     The  18-bit structure 
consists of  32 general purpose local store registers, main memory, 
control store,  shifter,  adder,   32 dedicated and  general "external" 
registers,  and 14 buses  connecting these units.     One end of each 
bus may connect  to any one of the  local store registers.     The other 
end of each bus  connects  the local store register,  as either source 
or destination,   to another unit.     Two of  the buses may have their 
other end attached  to any one of the external  registers. 

The 6-bit  structure is used for both control and data.    F-store, 
which consists of   32  6-bit registers,  has 14 registers assigned  for 
bus control.     For  each 18-bit bus,   one of  these  14 F registers is 
used to determine  to which of the  local store registers  that bus  is 
attached.     Similarly  two more F's determine which of the external 
registers  the other  ends of  two of  the buses are  attached  to.    With- 
in a T-step,  one  can specify which F is to be  loaded with a value or 
constant contained in the K field  (thus selecting the local or 
external  store register  to which a particular bus  is assigned),  and 
which buses are  to be gated to  their destination.     There  is also a 
6-bit arithmetic  unit for 6-bit manipulation.     Transfers of data 
between the  6-bit  structure and 18-bit structure  are made through 
local store register  31.    This register is broken up into three 
6-bit  fields,  separately addressable in a manner similar to the F's. 

A basic T-step executes in about 80 nanoseconds.    The results 
of a gating action specified in a T-step are not  usually available 
in the  following T-step,  but in the T-step after  that.     If no use 
can be made of the  extra T-step,  a stretch option is available to 
double the time of  the current T-step in order to make data available 
for the next T-step.     This stretch option saves no time,  but it does 
save nanostore for  the unused T-step.    Certain operations always 
must be placed  in a  stretched T-step to work.     A nanoprogrammer has 
to be very careful in defining his register usage and order of 
operation so that unused T-steps and time periods are minimized. 

The designers  of  the QM-1 intended that control store be used 
as a general purpose high speed storage for the microprogram and 
data.    For an emulation of a machine with more  than a few registers, 
the register values can be stored in control store.    The actual 
microinstructions used by the QM-1 are,  of course,  defined by the 
nanoprogram.    However, various features encourage one to adopt one 
or more of several microinstruction formats.    This is not seen to 
be much of a restriction or disadvantage,  since  the choices avail- 
able are  the most  logical. 
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Honeywell 6180 Emulation 

The benchmark emulation on the QK-1 cannot be completely 
defined without extensive experience Jn nanoprogramming and con- 
sultations with Nanodata Corp. The skills that need to be developed 
for efficient nanoprogramming could not be mastered in the short 
amount of time available to us for determination of this benchmark. 
However, feasibility could be deterndned and several figures have 
been arrived at. 

The basic hardware structure of the QM-1 to be used for a 6180 
emulation is almost identical to the standard QM-1, since the machine 
is not modular and expandable like the D-Machine.  Some changes, 
however, are incorporated as practically necessary to obtain reason- 
able efficiency. Most important are the expansion of the main 
memory word size to 36 bits instead of 18, and expansion of address- 
ing capability to 24 bits.  The memory unit in the standard QM-1 
empties its output data into a buffer unit (referred to as the RMI 
unit) that performs one of several rotate and mask operations selec- 
table by the nanoinstruction that reads memory.  This unit can be 
expanded to hold 36 bits of memory data, either half of which could 
be selected as standard 18-bit data. Memory input data could be 
similarly buffered in two 18-bit halves. The rest of the 18-bit 
structure of the QM-1 is ideal for emulation of a 36-bit machine. 
Expansion of addressing range to 24 bits requires assignment of one 
of the F registers as a 6-bit high order extension of the 18-bit 
memory address now gated into the memory bus. 

This emulation requires specially built DAT hardware for 
the QM-1. Control of this DAT hardware is accomplished by adding 
bits to the K or T fields that request access and initiate action. 
The DAT hardware makes references to the TFR and DSBR stored in 
defined local store registers, and returns its address in another 
defined local store register and F-store. 

Assignment and layout of control store and F registers pertinent 
to this benchmark are shown in Figure 28.  The last twelve F regis- 
ters are general purpose and known as  G0-G11. The interfaces to 
the DAT hardware are also shown. G4 is used to hold the 6 bits 
designating opcode type for purposes of checking illegal address 
modes and determining whether the instruction is a load or store 
type. 
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In addition to register storage in the QM-1, the lower locations 
of control store are used to hold the pointer registers (PRs), index 
registers, and the A and Q registers. There may be room in local 
store for some of these registers, but the increased speed of access 
is not worth the extra decoding required to get at these register 
values when they are used in address modification.  The addresses of 
the registers in the first 16 locations in control store are identi- 
cal to their register numbers as specified by the Td field in the 
instruction or indirect word.  The order is as follows: 

Address   Modification 

0 N      always contains zero for no modification 

1 AU 

2 QU 

3 DU     not used, since DU is decoded separately 

4 IC     copy of PPR.IC 

5 AL 

6 QL 

7 DL     not used for same reason as DU 

8-15 0-7    index registers (X0-X7) 

Each time the instruction counter PPR.IC is updated, it must be 
copied into control store location 4. All other registers are 
permanently and uniquely assigned in the locations specified. Note 
that the two halves of A and Q are not next to each other. This is 
not seen to cause too much difficulty, since the two halves have to 
be referenced separately anyway. 

The PRs are stored in the next 32 locations.  Each field in the 
PR is stored in a separate control store location for ease of access. 
The locations are as follows: 

16-23    PRn.RN 

24-31    PRn.SEGNO 
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32-39 PRn.WOKDNO 

40-47 PRn.BITNO 

The control store address of the high 3-bit field of a particular 
PR is 16+n, where n is the PR number.    Reference to the 4 fields in 
a particular PR is accomplished by incrementing the control store 
address by 8 for each successive field. 

Following the PRs, beginning at control store location 48,  the 
table containing information about each opcode is stored in numerical 
order of opcode.    The leftmost 6 bits of each entry contain flags 
and the rightmost 12 bits point to  the nanoprogram that executes the 
instruction. 

The usual method of building an emulator on the QM-1 is to 
completely nanocode important key routines and instructions.    After 
that a useful micro-language can be defined for the emulation.     In 
this way the loss of parallelism introduced by the relatively verti- 
cal structure of a microprogram has a minimal effect on execution 
time of the most important or commonly used instructions.    Therefore 
this benchmark emulation is not concerned with the nature or defini- 
tion of the microinstructions to be used.    The sample address pre- 
paration and execution of  the store A instruction discussed in the 
beginning of this section are entirely programmed in nanocode, and 
the assumption is that no significant time will be lost when a later 
conversion is made to microcode.     It may actually turn out that the 
entire address preparation will be specified by one microinstruction. 

A sample nanoprogram flowchart of the store A instruction with 
its specified modifications is shown in Figure 29.    Before dis- 
cussing this flowchart further, a few definitions of notation will 
be useful. 

Rn Specifies a local store register n « 0,  1,  2,   ..., 
31. 

CS(Rn) Contents of control store location pointed to by Rn. 

n —► RMI Specifies one of four functions (n-0-3) performed 
by the RMI unit when data is next stored from the 
RMI unit into local store: 

0    No change in data,  transfer all 18 bits to 
destination. 
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1 Bits 0-9 of source are put into bits 8-17 
of destination, bits 0-7 of destination are 
zeroed. 

2 Bits 12 and 13 of the source (Tm field) are 
put into the destination right adjusted. 

3 Bits 14-17 of the source (Td field) are 
stored in the destination right adjusted. 

C, A, B    These are names of the three 6-bit fields in R31, 
left to right, respectively. 

FIST      The name of an F register whose bits can be 
individually tested. 

NPC       Nanoprogram counter 

All other operations specified in the flowchart should be self- 
explanatory. 

The flowchart in Figure 29 is at a relatively high level. 
Individual operations in the flowchart correspond to one or more 
nanoprimitives. Some operations require more than one T-step, 
others require less than one.  For example, the operation R4—►Rl 
requires 2 nanoprimitive functions for setting up the bus control 
(using constants in a K field) and another nanoprimitive for gating 
the transfer of data.  It is not completely possible to count the 
number of nanoprimitives or T-steps required by this flowchart with- 
out actually doing the nanocoding.  Nanocoding requires skill in 
determining what functions can or should be combined in T-steps and 
a bit of cleverness in restructuring the flow so that the number of 
T-steps is minimized. One reason for our not attempting to nanocode 
this any further is that the skilled nanoprogrammer must be the one 
who defines the data structures in control store and local store. 
It is very unlikely that the structures defined above are the best 
possible. 

A rough estimate of the number of T-steps required to execute 
the flowchart is 60. This figure was arrived at assuming the maximum 
number of steps were required to perform each box in the flowchart 
with no overlap or simultaneous transfers taking place.  At 80 nano- 
seconds per T-step, this comes out to 4.8 microseconds in the worst 
case. To be added to this figure should be the time required to 
read memory once and part of the time required to write memory.  In 
addition, if the DAT box takes any additional time to compute an 
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address,   two calls to DAT should be added in.     It seems reasonable 
then to assume that the store instruction could be executed in 6-10 
microseconds as compared to the 6180 time of 1 microsecond.    This 
figure is consistent with initial estimates made by Nanodata per- 
sonnel when presented with a description of  the 6180. 

THE BURROUGHS B1700 

Our understanding of the B1700 is based almost entirely on the 
contents of a preliminary edition of the Burroughs B1700 Systems 
Reference Manual [l5j .    This manual is somewhat incomplete as it 
does not document all of the microinstructions, provide any timing 
information,  or explicity specify the data paths in the CPU.     Crude 
timing information is available from other sources [ 16 J .    We were 
unable to talk to any technical people within Burroughs to increase 
our understanding of the B1700. 

Description of  the B1700 

The B1700 is a family of small to medium scale computer systems 
designed to compete with the IBM System/3 family and the very low 
end of the IBM 360/370 series.    The preliminary Systems Reference 
Manual describes three models,  the B1712, B171A, and B1726,  and 
recently  (July, 1973) a fourth model,  the B1728 has been announced. 
The B1728 is the largest member of the family and we will use a com- 
bination of B1728 and B1726 characteristics in our feasibility study. 
Main memory for the B1700 uses LSI MOS technology, and has a read 
access time of 180 nanoseconds and a full cycle time of about 700 
nanoseconds.    The B1726 can have up to 98,304 bytes of main memory, 
the B1728 can have 262,144 bytes.    Both the B1726 and B1728,s cen- 
tral processors operate at 6 million cycles per second, and both 
have control memory as well as main memory.    The control memory on 
the B1726 has a maximum capacity of 2048 microinstructions.    The 
B1728 can have control memory for 4096 microinstructions. 

The single roost unique feature of the B1700 as a microprocessor 
is that it represents a first step toward eliminating certain in- 
herent structural components that are found in other microprocessors, 
and in fact,  in most computers.    A close examination of most micro- 
processors will reveal that the emulation of certain host architec- 
ture/instruction sets is much more feasible than that of others. 
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The Digital Scientific Corporations META 4,   for example,  can be used 
to reasonably emulate an IBM S/360, but not a DEC PDP-11 [l?] . 
One way in which the B1700 gives the appearance of no inherent 
structure  is  that there are no word sizes or data formats - operands 
may be in any shape or size without loss of efficiency. 

While the internal data paths of  the CPU are 24 bits wide, main 
memory is bit addressable and can be read or written in quantities 
of 1 to 24 bits.    The B1700 has only 4 general purpose registers,  a 
memory address register, and a scratchpad that can be accessed as 32 
24-bit words or 16 48-bit words.     In addition, a 32 word stack is 
provided,  allowing the nesting of micro subroutines.    Hardware 
condition bits are held in a set of 4-bit registers and the 24-bit 
registers  can be mapped into 4-bit fields.     Two of the general 
purpose registers are continuously used as inputs to a 24-bit  func- 
tion box.    The results of various operations on one or two variables 
(sum,  difference, logical and,  complement,  etc.) are selected by 
using the appropriate pseudo register in the source field of a 
microinstruction. 

Honeywell 6180 Emulation 

In emulating the 6180 we will use the standard B1700 hardware 
as described in documentation available to us, except we will assume 
that appropriate dynamic address translation (DAT) hardware can be 
interfaced with the CPU.     In doing an emulation the first task is 
to map the data structures of the emulated   (or target) machine onto 
the host machine.    In this emulation it is necessary to keep all 
programmer accessible registers   (pointer registers,  index registers, 
accummulator,  and quotient register)  in main memory, as well as the 
table used for decoding 6180 instructions, because there is no other 
place for them.    The scratchpad is too small and control memory can 
only be used to hold microinstructions.    Low level 6180 registers 
such as  the TPR and PPR and variables internal to the emulation are 
kept in the scratchpad. 

The benchmark emulation of  the STA instruction (see Figure 30) 
requires 76 microinstructions.    Assuming 250 nanoseconds  (about 1% 
machine cycles) per microinstruction,   this is an execution time 
of 19 microseconds.    Delays due to main memory accesses could easily 
increase this time to 25 microseconds.     Several other factors di- 
minish the feasibility of emulating a 6180 with a B1700.    The 
maximum size of control memory on the B1728 is 4096 microinstructions. 
It is highly unlikely that this is large enough for a full emulation - 
thus either microinstri ctions would have to be executed out of main 
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memory  (which the B1700 can do)  or micro routines would have to be 
"demand paged"  into control memory.     In either case performance 
would suffer.     Also,  the maximum size of main memory - 256K bytes 
for a B1728 - is very small compared to a "typical" 6180 configura- 
tion.     Even the theoretical limit of 2^1 bytes of main memory 
(based on the size of the memory address register)  is on the small 
side. 
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SECTION V 

SUIIMARY 

The Honeywell  6180 is a large and powerful machine,  containing 
many features not  found on other large-scale  computers.    The complex 
addressing structure,  virtual memory,  and  extended instruction set 
make emulation a difficult task.     In addition,  lack of complete 
documentation at  this point leaves uncertainties  that must be  taken 
care of  if an emulation attempt  is  to proceed.     We have drawn up 
"best  guess"  flowcharts of the  instruction cycle,  address prepara- 
tion,  and dynamic address translation  for  the purpose of defining 
the machine  in enough detail so  that a benchmark emulation can be 
performed.     In addition,  a general method  for complete emulation of 
the 6180 has been described. 

The  goal of  the benchmark emulation was to determine which of 
three machines  —  the D-Machine,   the QM-1,   and the B1700 — are 
suited  for emulation of the 6180,  and whether such an emulation is 
feasible.     We  have  concluded  that   the D-Machine  and the OM-1  can 
handle  the  emulation,  as they are general  purpose microprogrammable 
machines,  but  the B1700, with its small size and relatively limited 
computational  power,  probably could not.     The sample benchmark emu- 
lated a store A instruction using two of  the  common addressing modes. 
This  sample  gives a rough estimate of  the  relative processor speeds 
in  the  general  case.    The relative speeds may not necessarily be  the 
same  for  the  EIS  instructions,  which are much more complex in  their 
execution cycles,  nor for interrupts or dynamic  address translation 
involving memory  fetches.    We are confident,  however,  that our 
example  gives  us a good idea of  the overall  time  that will be  used 
within  the CPU  to execute an "average" program. 

It  should be noted that  the response   time seen by the operator 
at  a Multics  terminal is as much a function of load, memory size, 
speed of  I/O,   and  other variables of  the application or installation, 
as it  is of processor speed.     For example,   a 6180 with a small amount 
of memory and heavy  load resulting  in  frequent paging may appear to 
have a poorer performance than an emulator  that  runs at a  fraction 
of  the  speed but has more memory.     The choice of emulator should 
therefore be  based on the expected use and  load on the machine — a 
decision that  can not be made here.     In addition,  reliability and 
support by  the manufacturer of  the emulator must be considered. 
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Unfortunately,   it was not possible within the scope of this 
project to actually microcode the benchmark emulation on all three 
machines.    We believe,  however,  that our calculations are fairly 
accurate,  and they have been mostly supported by similar estimates 
made by people experienced in microcoding of the machines.    For 
each of the three machines,  the processor speed reduction has been 
calculated as  follows: 

D-Machine 11-18 times 

QM-1 6-10 times 

B1700 25 times 

Edmund L.   Burke 
Management and Computer Systems 

Morrie Gasser 
Management  and Computer Systems 

W.  Lee Schiller 
Management and Computer Systems 
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